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Abstract

In this paper we analysed the magnetic field effect on the spin-crossover phenomenon using different theoretical approaches:

thermodynamic and Ising-like models. This latter, including magnetic field, was treated in the mean-field approximation and*/for

the first time*/by Monte Carlo numerical method. We propose an adaptation of the metropolis algorithm to take into account the

different degeneracies of the high and low-spin levels and their Zeeman splitings due to the effect of magnetic field in both states. A

comparison of both methods is given and discussed.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In certain transition metal complexes, the spin state of

the central metal ion can be altered under external

perturbations, such as temperature, pressure, light or

magnetic fields [1�/4]. These spin-crossover (SC) com-

plexes, displaying thermo-, photo- and piezo- and

magneto-chromic properties, are of growing importance

in the area of functional materials, especially for

application in memory and display devices and as

molecular switches [5].

Concerning the magneto-chromic properties, it is well

known that the application of a magnetic field stabilizes

the high-spin (HS) state over the low-spin (LS) state and

therefore shifts the thermal SC to lower temperatures.

Sasaki and Kambara using ligand field calculations [6]

predicted this effect and its magnitude. The first

experimental study using a static magnetic field of 5.5

T was reported by Qi et al. [7]. They observed a �/0.19/

0.04 K shift of the transition temperature (T1/2) for the

complex Fe(phen)2(NCS)2. Latter, further complexes

with CoIII [8], FeII [9] and MnIII [10] central ions were

investigated under somewhat higher static fields (10�/23

T). In all cases, small shifts in T1/2 (from �/0.1 to �/1.6

K) were detected. The static magnetic field effect on the

dynamical processes has also been considered [11,12].

Recently, we have reported the effect of a pulsed

magnetic field (PMF) on the SC systems

Fe(phen)2(NCS)2 [13], FexNi1�x(btr)2(NCS)2 �/H2O

(with x�/0.33, 0.52 or 0.8) [14,15] Co(H2(fsa)2en)py2

[4]. The main findings can be summarised as follows:

(i) Applying a 1 s PMF of 32 T to the spin transition

solid Fe(phen)2(NCS)2, sizeable effects are observed on

the HS fraction. In the hysteresis loop temperature

range, an increase of 15% in the HS fraction is obtained,

with an irreversible (reversible) character in the ascend-

ing (descending) branch of the loop [13]. The time

dependence of the HS fraction provides information on
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the kinetics of the SC process at the spin transition.

Delays between the excitation (magnetic field) and the

response (increase of the HS proportion) have been

observed: 90 ms (50 ms) in the ascending (descending)
branch.

(ii) Applying a PMF of 32 T to the solid CoII(H2(f-

sa)2en)py2 leads to an irreversible and quasi-complete

S�/1/20/S�/3/2 transition [4]. The effects are shown in

Fig. 1.

(iii) A correlation between the delay (excitation/

response) and the cooperativity of the SC phenomenon

has been evidenced by studying the effect of PMF on the
family of diluted complexes FexNi(1�x )(btr)2(NCS)2 �/
H2O [15] where the dilution x controls the cooperativity.

An exponential dependence between the delay (excita-

tion/response) and the cooperativity has been evidenced.

This dependence is shown on Fig. 2.

In the present paper we study theoretically the effect

of magnetic field on the SC phenomenon by using the

Ising-like model adapted to the effect of magnetic field
and resolved by the mean-field approximation and

Monte Carlo techniques. SC between a diamagnetic

S�/0 and a paramagnetic S�/2 (Iron(II) complexes)

and also between two paramagnetic states S�/1/2, S�/

3/2 (cobalt complexes) are examined.

2. Theoretical models

2.1. Two level Ising-like model

To describe a system with two energy levels, a fictious

spin s is associated with the HS and LS states for each

molecule i . Then, the energy of the system is expressed

as a function of the energy gap (D0) between the two

levels of an isolated molecule and a phenomenological

parameter (Jij ) describing the interactions between the

molecules i and j [16]:

Þ

Hi�
D0

2

Þ

si�
X
j"i

Jij

Þ

si

Þ

sj (1)

where

Þs is a fictious spin operator with eigen values �/1

or �/1 for the HS and LS states, respectively. Each level
in this model represents an effective level including the

electronic configuration and the vibrational density of

states.

The magnetic field, via the Zeeman effect, removes the

electronic degeneracies of the HS and LS levels, and the

new Hamiltonian is written as:

Fig. 1. Set of isotherms nHS(B ) showing the irreversible (and quasi-total) triggering effect on the HS fraction in Co(H2(fsa)2en)(py)2 for an applied

PMF in the metastable LS state (after [4]).

Fig. 2. The time separation between Bmax(t ) and nHS
max(t ) on the

ascending branch of the hysteresis loop (for initial temperatures

corresponding to a molecular fraction nHS
0 �/0.4) for different samples

as a function of J /kBTc (after [15]).
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where mB is the Bohr magnetron, gL is the Landé factor,

B is the magnetic field strength and Sz is the projection

of the spin moment operator along the field direction.

This latter can take any of the 2S�/1 values Sz�/�/S ,�/

S�/1,. . .,S . The system is described now by its spin state

si and also by Sz.

2.2. The mean-field approximation

In order to solve analytically the Hamiltonian (Eq.

(2)), we use the mean-field approximation where the

interaction-energy of the neighbouring molecules is
averaged as Jh Þ

si:X
j"i

Jij

Þ

si

Þ

sj 0 Jh Þ

si Þ

si (3)

In this approximation, we can deduce the HS fraction

nHS through the average of the fictious spin h Þ

si:

nHS�
h Þ

si� 1

2
(4)

as well as the transition temperature (T1/2), defined as

the temperature for which the proportions of LS and HS

molecules are equal (nHS�/nLS�/1/2). By expliciting the

mean value of

Þ

s we obtain for nHS:

nHS(B)�
r(B)

r(B) � exp
D0 � 2J(2nHS � 1)

kBT

(5)

with

r(B)�
gHS;vib g(B;SHS)

gLS;vib g(B;SLS)

and

g(B;S)�
sin h((2S � 1)gLmBB=2kBT)

sin h(gLmBB=2kBT)

and for T1/2:
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kB ln
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�
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where gHS,vib and gLS,vib are the vibrational degeneracies

of the HS and LS states, respectively.

In contrast to [10], the exact solution of the self-

consistent Eqs. (5) and (6) can be obtained only
numerically! Fig. 3 represents the resolution of Eq. (5),

for each fixed temperature, using the Newton numerical

method. This resolution was carried out in the case of a

gradual conversion between the diamagnetic (SLS�/0)

and the paramagnetic (SHS�/2) spin states with the

parameter set D0�/700 K, J�/139 K, gHS,vib/gLS,vib�/30
and for different strengths of the applied magnetic field.

One can note that for an applied magnetic field above 18

T, a first order phase transition appears accompanied by

a thermal hysteresis. This effect has been also shown

qualitatively in Ref. [10]. In fact, the magnetic field

decreases the transition temperature, but the condition

for a first-order transition J /kBTc�/1 [17] remains

unchanged. This condition is illustrated on Fig. 4. For
J�/139 K the first order phase transition appears above

138.88 K.

As described in Refs. [13,14], see also [6�/8], we can

also obtain an analytical expression for the variation of

T1/2 as a function of the applied magnetic field strength

from the Landau free energy in presence of a field and in

thermodynamic equilibrium:

dT1=2��
4(mBB)2

kBD0

(7)

Fig. 3. Calculated Spin transition curves for different magnetic field

strengths; with SLS�/0, SHS�/2, D0�/700 K, J�/139 K, gHS,vib/

gLS,vib�/30 with the Ising-like model solved by the mean-field

approximation.

Fig. 4. Variation of spin transition temperature (in heating and

cooling mode) as a function of the magnetic field strength; with

SLS�/0, SHS�/2, D0�/700 K, J�/139 K, gHS,vib/gLS,vib�/30.
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for the case when SLS�/0 and SHS�/2

dT1=2��
2(mBB)2

kBD0

(8)

for the case when SLS�/1/2 and SHS�/3/2.

Fig. 5 represents Newton numerical resolution of Eq.

(6) using the same parameter set and for increasing

values of the magnetic field strength. On the same figure

the result of the thermodynamic approach (Eq. (7)) is

shown too. It appears, as expected, that the transition
temperature decreases quadratically with the magnetic

field B , and the two approaches are equivalent for weak

magnetic fields, but they diverge for strong fields.

For the case of Co(H2(fsa)2en)py2 (SLS�/1/2 and

SHS�/3/2), the self-consistent Eq. (6) reduces to:

T1=2�
D0

kB ln

�
2

gHS;vib

gLS;vib

cos h

�
2mBB

kBT1=2

�� (9)

Fig. 6 shows the difference between the zero-field

transition temperature T1/2(B�/0) and the transition

temperature for an applied magnetic field T1/2(B ), using

D0�/168 K and gHS,vib/gLS,vib�/1.875 determined from

calorimetric measurements [18]. A static magnetic field
of 30 T corresponds in this case to a variation of T1/2 by

4.9 K towards the lower temperatures. This value is in

perfect agreement with that obtained in Ref. [4].

2.3. Monte Carlo method

The mean-field approximation is not well adapted to

determine the exact value of the hysteresis loop, even if

this method is powerful for understanding the main

ingredients of the SC phenomenon [16,19,20].

We have thus used, as suggested in Ref. [20], the

Monte Carlo�/Metropolis method [21,22] to solve sta-

tistically the Hamiltonian (Eq. (1)) as described in Refs.
[23,24]. The application of a static magnetic field leads

to the splitting of the electronic degeneracies, thus the

algorithm Metropolis must be modified to solve the

Hamiltonian (Eq. (2)). Let us consider a transition for a

complex with FeII (SLS�/0, SHS�/2). There are five

possible transitions (noted from 1 to 5), and the detailed

balance of equilibrium is written as:

gvib;HS

X2

i��2

e�bEHSi WHSi0LS

�gvib;LSe�bELS

X2

i��2

WLS0HSi
(10)

where gvib is the vibrational degeneracy, b�/1/T , E the

energy and W transition rate.

The algorithm considers only one transition each time

hence when a spin j flips from the �/sj to �/sj ; one must

know which probability is to consider. For this, we have

introduced a second random number, which decides at

each iteration, to which HS state the system converts. It

should be noted also, that in our calculation the time-
unit is the Monte Carlo loop. On the other hand, the

time unit for the transition rate WLS0HS is not a loop,

but five loops because of the second random number. In

order to have the same time reference, we divide

W ?LS0HSi
by five. The equilibrium condition used by

the algorithm becomes:

gvib;HSe�bEHSi WHSi0LS�gvib;LSe�bELS
W ?LS0HSi

5
v (11)

with i�/�/2, �/1, 0, �/1, �/2.

The sum of the five equations used by the algorithm

confirms well the detailed balance condition (Eq. (10)).

Fig. 5. Variation of the spin transition temperature as a function of

the magnetic field strength; with SLS�/0, SHS�/2, D0�/700 K, J�/139

K, gHS,vib/gLS,vib�/30, calculated using Eq. (6) (full line) and Eq. (7)

(triangles).

Fig. 6. Co(H2(fsa)2en)py2, Numerical calculation of the variation of

the spin transition temperature as a function of the static magnetic field

strength, using the two-level Ising-like model with the mean-field

approximation.
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Fig. 7, shows the variation of T1/2 as a function of the

static magnetic field in case of a gradual transition

(SLS�/0, SHS�/2), for D0�/700 K, gHS,vib/gLS,vib�/30

and J�/120 K, using the Monte Carlo method (trian-

gles) and the mean-field approximation (straight line).

Bousseksou et al. [13] have shown that if the transi-

tion is supposed to be quasi-static, a magnetic pulse of

32 T is equivalent with a temperature pulse of 1.8 K for

the complex Fe(phen)2NCS2. In the case of the complex

Co(H2(fsa)2en)py2, a pulse of 30 T was found to be

equivalent with a temperature pulse of 4.9 K [4]. Fig. 8

compares the amplitudes of spin conversions induced by

the magnetic field in Fe(phen)2NCS2 obtained experi-

mentally and those obtained by the quasi-static ap-

proach. The same comparison is displayed in Fig. 9 for

Co(H2(fsa)2en)py2. In the case of Fe(phen)2NCS2, the

actual response of the system is lower than expected

from the quasi-static approach, while for the Co(H2(f-

sa)2en)py2, the theory is in good agreement with the

obtained results. This difference between the two

systems is related to the kinetic aspects of the process.

Hauser [25] have shown that the relaxation HS0/LS

relaxation depends on the temperature and nHS. This

relaxation depends inherently on the energy barrier

which separates the two spin states and reduces the

effect of the magnetic field. In the case of

Fe(phen)2NCS2 a relatively slow relaxation may explain

the delay between the excitation and the response as well

as the attenuation of the response in comparison with

the magnetic field strength. One can qualitatively

appreciate the relaxation rate by measuring the varia-

tion of the thermal hysteresis width as a function of the

applied heating/cooling rate. The strong variation of the

hysteresis width for rates between 0.2 and 10 K min�1

Fig. 7. Calculated spin transition temperature as a function of the

magnetic field strength, with SLS�/0, SHS�/2, D0�/700 K, J�/120 K,

gHS,vib/gLS,vib�/30, using the two-level Ising-like model. Mean-field

approximation (full line) and Monte Carlo resolution (triangles).

Fig. 8. Fe(phen)2NCS2, comparison of the triggering amplitudes by 32

T, as function of the HS fraction of the initial state. Experimental data

(triangles) and calculation using the quasi-static approach (squares).

Fig. 9. Co(H2(fsa)2en)py2, comparison of the triggering amplitudes by 32 T, as function of the HS fraction of the initial state. Experimental data

(triangles) and calculation using the quasi-static approach (squares).
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[26] shows that the relaxation is rather slow in this case.

In addition the cooperativity of the system can modulate

the delay excitation/response, in regards of the experi-

ments carried out with the FexNi(1�x ) complexes [15].
On the other hand, for the Co(H2(fsa)2en)py2, the

relaxation is supposed to be faster, i.e. the barrier height

is lower compared to the FeII complex. This could

explain that no delay was observed between the

magnetic pulse maximum and the minimum of the HS

fraction as well as the good agreement between the

experimental and calculated amplitudes of the spin

transition. This hypothesis is supported by the reprodu-
cibility of the thermal loops when the heating rate was

varied between 0.2 and 20 K min�1. A firmer confirma-

tion could be obtained by measuring the HS0/LS

relaxation rates. These experiments are in progress.
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References

[1] P. Gütlich, Struct. Bonding (Berlin) 44 (1981) 83.

[2] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 33

(1994) 2024.

[3] E. König, Struct. Bonding 76 (1991) 51.

[4] A. Bousseksou, K. Bokheddaden, M. Goiran, C. Conséjo, J.-P.
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